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We examine the problem of the characteristic oscilllations of an isotropic
elastic slab with plane parallel boundaries and with Lamé parameters and a
density which are smooth functions of the vertical coordinate, The disper~
slon equations for the phase velocity are obtalined, and an asymptotic inves~
tigation of these equations is carried out for large wave numbers. It is
shown that the form of the family of dispersion curves essentially depends

on whether or not the Rayleigh velocity exceeds the smallest value of the
velocity of a transverse wave in the slab, As a preliminary in this' inves=~
tigation we construct the asymptotic of the solutions of a certain system of
ordinary differential equations on an interval which contains a turning point,

1. Oonstruotion of the solution, We consider a slab ¢ < 2<{ b, 1n
which the displacenent vector U (z, ¥, %, £) = (Ux, Uy, U,) satisfies the sys-
tem of elastic equations

o= (A+p)v(v, w+paut (v, 0)vist
+ (Vr, vu) +(Vn, v)u —pu =0 1.14)
We shall assume,that the Lamé parameters A and pu and the density o
are smooth functions of the depth 2z ., The boundaries of the slab are free

of stress b = 1y = t,, = 0, z = a, z=2>0 (1.2}
As in [1], we examine the plane problem
u=nul(z, 2zt = (U u,)
We seek solution of the problem {1.1) and (1.2) in the form
u, (z, 2z, t, k) = e (G, sin kz, G, cos kz)

For every o # 0 a solution of this form clearly is the superposition of
two waves propagating along the slab in mutually opposite directions., In
the sequel we shall show that such solutlons exist only for certain values
of ¢ (depending on k). For such values of ¢ the functions @, (z, k, o)
and ¢ (z, k, @) decrease rapidly upon passage into the slab from the sur-

face, which allows one to consider the corresponding solutions u

] as sur-~

face waves,
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1068 A.G. Alenitsyn

For the vector 0(:, ¥, ©) we have the system

G" -~ kAG' - kK*BG + k(G -+ DG' =0 (1.3)
of two ordinary differential equations with smooth matrices 4(z), B(z,0),
¢(g) and p(a) and the boundary conditions

G + kG =0, z=a,  z=5b (1.4)

In order to satisfy conditions (1.4), we shall construct the vector @

in the form
3 (4)
G = 0,G" + a,G*® + a6 + e G
where G = (ﬂj)(z,ﬁg 0) 1s one of the four linearly independent solutlons

of the system (1.3). The coefficients q, are not all equal to zero when

det R = 0 (1.5)

Here R(x,0) 1s a matrix of fourth order with the elements

le — (‘%: Gx(j) _ sz(j)) o R2J' — (,% Gz(j) + k% Gx(il) L=a
Ry = ( % G, — szo’)) I]z___b’ Ry = ( gz ¢+ k % me) iz=b

(v=At+2n 7=1,2,3,4)

The relation {1.5) 1s the dispersion equation for the phase velocity o(x).
We shall study the solutiin of thils equation for k §$> 1, for which we shall
need an asymptotic representation of the solutlon of the system (1.3) for
k= 4+,

The asymptotlc formulas have various charactenistlics in cases when the
interval [a,b] does or does not have a point of multiplicity (turning
point). In the first case one may, as in [1], make use of the formulas of
Tamarkin [2]. In the second case the asymptotics are not difficult to con-
struct by the method of standard equations 1n a form adapted to a system of
equations. In addition, it 1is possible to take advantage of the results of
Feshchenko [3] and Iliukhin [4] for the "splitting" of the original system
into blocks, after which the obtained block system is reduced to equations
of the first and second order to which 1s applled the uniform asymptotic
method of Langer [5] for the solutlon of second order equations. In this
procedure, the obtalning of subsequent terms of the asymptotic series turns
out to be extremely laborious. Threfore, the simplicity of the standard
method and the convenience of the direct formulas that are obtalned is an
" important advantage of this method in comparison with the method of splitting
and the study of the spllt system.

2. Asymptotio representation of the solutions of the systenm (1.3). We
rewrite the system (1.3) in the form of a system

7 = kHZ + KZ 2.1)

of four ordinary differentlial equations of first order for the vector

7 1 d 1 d
Z = (Zy, Zay 23y Z) — (6o Guv g 7; G + 26

The matrices y and 4k are as follows:
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0 0 i 0 0 0 0 0
0 0 0 1 0 0 0 0
H= p~im, 2 0 0 p1—1|> K= 0 pip —p/p 0

0 pm? p=—1 0 — My 0 0 —v' /v
H
ere \ . . . . . vaﬁ(z) 1

mpt =1—ny?(z)e* m?2=1—n2(z)a? p=;,—(zi<—2—-

20 __ 1 3 _.E££2== 1
=S T gm O TG T am

Let us agree to call a point of multiplicity (turning point) the value of
the independent variable z (depending on the parameter & ) for which two
or more roots of the characteristic equation of the matrix X(z,c) coincide.
By virtue of the inequality v,(z) < v,(z) » points of multiplicity are
determined from Equations v,(z) =o¢ and uv,(z) =o . If v,(s) and v (s)
are such that for fixed ¢ > O and 3z € [a, b] there are no points of multi-
plicity, then as is «mown (see for example [6]), there exists on the interval
{e,p] a fundamental matrix #{z,k,0) of the system (1.3) having for k-
the asymptotic representation

m-1 . z
® (2, k 0) =P[ 3 K7 B;() + 0 (™ |exp [k (A (2, 0) ] (22)
j=o a
Here P{y,0) 1s a matrix which reduces g(»,s) to the dlagonal form p =plyp
and the smooth matrices B, are determined from the recursion system.

We examlne the case of the presence of points of multiplicity, For sim-
plicity we assume that v, (z) increases monotonously, whereby u/(z) > O on
la,2] and v (z) > »,(p) . Then. it 1s obvious that for p, (a) < 0 ¥ (B)
there 1s only one point of multiplieity 2z, (0) & l[a, b]. It 1s not difficult
to find a nonsingular transformation Z = 7X which brings ¥ to the quasi-
diagonal form

ey _fi—m 0 0 1 ]
H =T HT——[“ o’ +my, | ﬂmsz 0
The matrix 7T 1is of the form
1 1 0 i
f
m, —m, —1 0
T=I —m, m, m2 0
—m? —m? 0 —1

For the vector X we have the system
xl — kax +KXX (K" = T_IKT — T‘IT’) (23)
We examine the auxiliary quasi-diasgonal matrix

W = [Yb Yg]
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z

Y, =UUwJal, Jia= exp (43 kS my, (', 0) dz’)

Y1 (2) = 2k" (¢ (2)1 v (k"9 (2))
¥2(z) = k(@' (2)] "u (K" (2))

@ = (3] | Imrw, 0 e ) sgn 12— (a0

24(0)

Here

_ y1(2) ys (2)
Y, = " klyy' (2)  k7lyd' (2)

1

Here u(t) and v(t) are Alry runctions as defined by Fok [7].
The matrix w satisfiles Equation

W =kH W+ K'MW (2.4)

Here
0 0 " 1
M(Z)=[O,M2], M2= r(z) 0", r=%, ¢=VOW=)

If A{(z), u(z) and p(z) are infinitely differentiable then, as it is
not difficult to show, one may select infinitely differentiable matrices
A,(z), 4,(4),..., such that the expression

[o o] N
X" =Y k4@ W@
=0
will be a formal matrix solution of the system (2.3).
Indeed, the substituticn of X~ into the system (2.3) glves for the
determination of - 4,(y) the recurslon system
AJH* = H*A,, A, + AH* = H*4, + K*4, (2.5)
Am' + AmuHx = HxAmﬂ +KxAm - Am—lM m=12,..)
It 1s easy to verify that the general solution of the first Equations
(2.5) is the metrix _fJa O e do ]
o= ' dom,?  co

0 bo
with arbitrary a, (z), b0 (2), ¢, (2) and do (Z) We conslder the second of
Equations (2.5). Each matrix of fourth order we shall partition into four
square blocks. The blocks will be enumerated as follows:

Hy  Hye A, = An Ao
Hy He \' 07 || A Aw

For the blocks we have Equations
Ay + AyH* = HAy + KAy, ApHY = H*Ay, + Ky Ay (2.6)
Aqux =H>A;s + KA, Ao + A H = H A, + K Ao,
The first of these equations for @, and p, gives
a, = exp S (K*) 11 dz, by = exp S (K*)gy dz
From this same equation, the nondiagonal elements of the matrix 4,, are

determined in a unique way by means of the already known quantities g, and
b» - The equation containing the matrix 4, uniquely determines its elements

H* =

ete.
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by means of Ka" and 4, since H x and H * do not have general character~
istic numbers.(¥)

We turn to the equation containing 4, . A calculation of the matrix
K* shows that the nondiagonal elements of the block K"‘ are identically
zero, which has the consequence that 4, may be put equal to zero.

A stralghtforward calculation gives Formulas

a d1
dmli-g1 a

oy = exp g (10 + BV dz, = — e’ + Bust

where ¢,{(z) and n, (2) are arbitrary (until now) functions.

Aoy = [¢, 6], Ay =

@.7)

From equation containing 4,, , the elements 4, arc uniquely determined.
It is essentlal to note that the constructed 4, and 4, are infinitely dif-
ferentlable If ¥ and X possess this property. This same procedure allows
one to determine sequentially the remaining infinitely differentiable A, (z).
Likewise, 1f A, u and p are smooth then, obviously, it is possible to
find only a finlte number of smooth Ay

We turn to the Justification of the formal expansion. It is not difficult
to see that the matrix

m .
X =Y k"4;(z) W(2)
=0
satisfies Equation

(X*) = [kH* + K* + K™ ] (2, k, 0)1 X* (2.8)

where T'(z, k, 0) = O (1) for k¥ - » . By standard method we come to the
following Iintegral equation for the proper fundamental matrix Y of the
system (2.3):

(’)
X (2, k, 0) = X* (3 k, 0)~—--3X"(z k, o) [X* (2, k, &)1 T (2, k, o) X

x X (2, k, o) dZ’ (2.9)
We left multiply this equation by the nonsingular matrix
m . ~1
Pi=[3k74;(9) |
j=0
and introduce the notation F~'X = U . The path of integration in Equation

{2.9) can be chosen as follows

U@ =W@ +o SWI (2 W () T* () U (2) d2 +  (240)

+}73 L (@W () T (2) U (2') d’ (1% -=— P7ITP, W= Wi+ Wy)

a

*) Ir v, and v, are square matrices that do not have general character-
lstic numbers, then the matrlx equation 4V, = V.4 has the unique solution
4 = O (sec, tor cxample, [3])
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'I'hg partitioning of the matrix ¥ must be different for different vectors
U? (2):

wi=[lo 3l

For such a partition, as 1t 1ls easy to see, the integral equation for the
vector [UWJ 4} has a bounded kernel. Indeed,

Y, (@Y, (2 =0y Dy (2)] + 192 (2) 41 () ])
But from the propertles of the Airy functions (see, for example, [7]), it
follows that z*
192 (D1 (&) | < Crexph { my (L, 0) 4T « for #, 52, (3

2

(71 (¥ () [ <<Cy  for 2, 2K z, (9)

As a consequence of the inequality My (3, 0) > m, (z, 0) valid for
z > z, (0), the matrix Y3 (2) Yo' (2') J{ (2') /11 (2) 1s bounded for x ~ + =
on the entire square 32, e [a, bl. The boundedness of the first block of
the matrices W, (2) W (z')J, (z)Jy7 (2) (v=1,2) 1s obvious.

, Y2] for UV xU® W, = H]g ‘;2“, 0] for * U® z YW

The proof of the boundedness of the kernel of the equations for the vec-
tor U(2)J 2'1. follows in an analogous way. Hence, we obtain the asymptotic
formula

Zo® =T X0 — [ -m &) .

2) X NETA(E) 40 (k )] W) G=1,2) (2.11)
V=0

valid for g < 2 < b.

The equations for the third and fourth vectors of the matrix ¢ have to
be examined in a somewhat different way because the functions y, (z) and
v={z) have zeros for =z < z,(¢) .

If z > Z, (O), then by considering the equations for U(3)y1—1 (z) and
U(‘”y{l (z) we obtain a formula which is analogous to (2.11)

m-1

Lo =T[ QKA () + 0 K™ We® (=34  (12)

v=0

valid for 2 (0) <z 6.
For 2 < Z; (0) the matrix Y,{s) is bounded. This leads to Formula

2o® = T[S K74, QWP () + 0 (6™]  ¢=34 (213)

v==0
valld for a < 2 X 2 (0).

The method which has been applied is a combinatlion of the classical method
and the method of Cherry [8]. It allows of generalizatlon of the case of a
complex reglon and & complex parameter. However, the cholce of & path of
integration is markedly more complicated in this situation as compared to the
cholce of the path in [8] because of the presence of the "classical” part
¥, (2) of the matrix w(z) . It is more convenlent to use the splitting
method, developed for complex reglons by Sibuya [9] and Wasow [10], although
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this method 18 essentially local,

3. Dispersion ourves (first oase). We shall construct the dispersion
curves g = o(k) for x> 1. Let ¥g (2) denote the velocity of a Rayleigh
wave over the depth z . We shall assume that

vg (@), vg () < ming, ») 9, (2) = Vem
The application of the asymptotic representation (2.2) for

00K Ve — &

and with m = 1 leads to the following representation of the dispersion

equation a b b
A® (k, 6) A® (k, 0) = S°(k, 6) S° (K, 0) e-24/(®) [1 + O (e-k)] (3.1)

where
A* (K, 0) = Ay* (0) + O (k™Y), b
S (b o) =S +o@y, O Y mi(z,0)dz>0,  ¢>0

Aj (0) =1 + mp2 (z, 0)1* — 4m, (2, 6) m, (2, 0)
So* (0) = 1 + m2 (z, 0)1* 4 4m, (z, 0) m, (2,0) >0

It 15 obvious that if vg (@) 5= VR ()) and hence A®=£ A’ for k> 1,
Equation (3.1) has two solutions

o (k) = opg (k) + N*(k) (1 + O (™)1 exp [— 2kf (023)]  (3.2)
or () = ogg (k) + N°(k) [1 + O (7)) exp [— 2kf (0m0)]  (3.3)

Here Ogg (k) satisfies the equation A? (k, 0) = 0 and for k> 1 has
the representation ggf (k) = vg (2) + O (k) (see [1]);

sesb b s2s°
N ka e yoraes N(") = T GAAb A<
® = A% jas | _ o A%AY 06 | _ o
Ro Ro

It is extremely essential, that by virtue of the fact that Equations
(2.10) are real, Formulas (2.11) to (2.13) contain only reasl terms; there-
rore (3.2) and (3.3) are real.

It Ae (k, 0) = Ab (k, 0), then there exist two such solutions as follows:
og* (k) = ops (k) £ t (k) 1 + O (e*)] exp [— kf (0r))] (3.4)

2y _ 5%
(r (k) » >0)

(9% ] da)?
FOr Vg < O < MAaX(qp] Vs (2) there exists at least one turning point
z,(3) . Ve assume that v/(g) > O . If for

v.m + 8 < [ < vu — 8 (vu = min {v. (b)7 vm}! va min(u.b]vp (Z))

we apply Formulas (2.11) to (2.13) and the Debye asymptotics of the Airy
functions
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u () ==t"%[1+ O (t'h) exp g t's
v(t) =t [y + O ()] exp (— ¥, t'h)

u () = v% [cos (st + V) + O (v-*h]
2 (t) = % [sin /st + Yem) + O (v)]

for t—+ 4+ o

I

t=—T~ — o0

we go over tu a representatlion of the dispertion equation

A(k,ot; Ak, 0) =Y 2S(k,0(;S:;r1,a) e 1 + 0 (7)) (3.5)

Here

A™ (k, 0) = sin ¥ (k, 0) + O (k™Y), S (k, 0) = cos ¥ (k, 0) + O (k)
¥ (k, o) = kt (o) + 8 (0)
24 (0)
e@=7_maﬁ%%ﬁ? t@= | VamT@—1d:>0
a (o) = [1 + m? (a, 0)1, B (0) = 4|m, (a,0)| my(a,0) >0

The quantities A® and S° have asymptotic representations (3.1).

Because @ > v, (@) > vg (b), A° (k, 0) = 0, then, as is easily seen,
Equation (3.5) determines a family of curves } = Kk (o) in the plane ko
k(o) =n—8(@) +0UANIt 0 (U=1lylo+1,...; [,>1) (3.6)

By virtue of (’(o) > O , with increasing ¢ , the modulus of inclination
of this famlly grows without bound. The corres-
ponding plicture of the plane xc¢ 1is schematical-

c

1y sketched in Fig.l.

If Upm > Max v, (z), then on the interval

v, (2) << 60 < Vpm  there are no turning -
points. In this case, Formula (2.2) leads to the v:(b)__m:
asymptotic representation 4® and S* of the Yl — = ———m————
same type as the representation A'“, S in
Formula (3.5).: 0 K

4, Dispersion curves (second oase)., The plc- Fig. 1

ture on the plane ko 1s more complicated when
vR (b) > Upm. Again, let V/(z) > O, and let

vr (B) = v (2)) < Vpm, @ < 2 < b.
The application of Pormulas (2.11) to (2.13) leads (again considering the
reglon Vs < 0 < ¥M) to Equation (3.5), but in this case A®(k,0) has
a (simple) zero g — 033 (k). Starting from the integral equations in Sec-

tion 2 and the Debye asymptotics of the Airy functions, 1t 1s not difficult
to establish estimates of the type
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k12 A% (k, 0) — L (0) cos ¥ (k, 0) = O ()
2 a (ko) — AP @I =0 (Y  ete. (D)

We introduce the notation 1 = 0 — URob (). 1r

01> Ak 82>0, 4,30,
then In this case it 1s obvious that

| A® (k, 0) | > Ak,
and once again Formula (3.6) 1s obtained.

Now let m = O (k177), y> 0. Equation (3.5) then may be rewritten in
the form

na (k, ) b () + kne ¢k, ) = Q (k, m), b (k) = A™ (k, omy (B)) (4:2)

Here ¢Q(x,n) 1s the right-hand side of Equation (3.5) and the functions
a(x,n) and o(%k,n) have the following asymptotic representations:

a (k, 1) = 45 A lomop 0y + O (K1) >0

(4.3)
_J1. 9 A% ~1

ck,n) =k 1—6? A (K, o)ln___st + 0 (K™Y

A straightforward examination of Equation (4.2) shows that the presence
of the right-hand side Q =0 (e"”"‘) essentlally affects the behavior of
the curves g = ¢,(k) 1n the neighborhood of the curve o0 = cRﬁ (k’ Namely,
1r Q = 0, we would have as a solution of Equation (4.2) the family (3.6)
and the curve O = Ung (k) which intersects this family. As should be expec~
ted, the presence of ¢ leads to the disappearance of the 1n_tersection points
of the dispersion curves. As it 1s easy to calculate, the nelghboring curves
have their places of nearest approach at the points

b = [t — (0 + 5,8 lomopy + O ()] T (25 (B)] (4.4)

271=lim [O'Rg—UR (b)]k for k- o (m——:mn. mg+1,...;mo>1)

The distance in the vertical direction
between neighboring curves turns out in
this case to be equal to

[
Bl:[1 + O (k)] exp [— kf (vr (B))] (4.9)
S b vl
Uﬂ(ﬂ) B2 = ___O__GT____ > 0
20'dAo” [ dS [a=vp(b)
U@
U”(a)__ _—— e — The properties of the dilspersion curves
for o = v,, may be investigated by the
0 K application of the same Formulas (2.11) to

(2.13). A schematic picture of the distri-
Fig, 2 bution of the curves in the xo0 plane 1s
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glven 1in Fig.2.

The region ¢ > V.. may be investigated 1n a completely analogous way to
the above; 1n which case 1t 1s clear that formulas of the type (2.11) to
(2.13) will contain the point 2 (o) as a turning point.

In concluslion we note that by patching together formulas of type (2.11)
to (2.13) which are suitable to intervals of monotone velocity, it is possi-
ble to study Rayleigh waves in a medium with nommonotone propagation velocl-
ties.
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