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oscillationq of sn Isotropic We examine the problem of the characteristic 
elastic slab with plane parallel boundaries and with Lame parameters and a 
density which are smooth functions of the vertical coordinate. The dlsper- 
sion equations for the phase velocity are obtained, and an asymptotic lnves- 
tigation of these equations is carried out for large wave numbers. It is 
shown that the form of the family of dispersion curves essentially depends 
on whether or not the Raylelgh velocity exceeds the smallest valUe of the 
velocity of a transverse wave In the slab. AS a preliminary in this'lnves- 
tigatlon we construct the asymptotic of the solutions of a certain system of 
ordinary differential equations on an interval which contains a turning point. 

1964 1 

1. Oonotruotlon of thr rolutlon. We consider a slab a < .z\< b, in 

which the dlsplacenent vector U (32, y, 2, t) = (&, ulr, U,) satisfies the sys- 

tem of elastic equations 

&I- (h+P)Vk7J, u)+~~u~~v,u)v~+ 

+ (VP., VU) + (VP7 v)u - Puff = 0 (W 

We shall assume.that the Lame parameters A and P and the density p 

are smooth functions of the depth i , The boundaries of the slab are free 

of stress 
tzr = t,, = t,, = 0, z = a, z=b U.2) 

As In [l], we examine the plane problem 

u= u (5, 2, t) = (43 4 

We seek solution of the problem (1.1) and (1.2) in the form 

u, (5, z, t, k) = eikf* (G, sin kr, G, cos h) 

For every (J # 0 a solution of this form clearly is the superposition of 

two waves propagating along the slab in mutually opposite directions. In 

the sequel we shall show that such solutions exist only for certain values 

of u (depending on k). For such values of u the fur&ions G, (z, k, u) 

and G (a', k, u) decrease rapidly upon passage Into the slab from the sur- 

face, which allows one to consider the corresponding solutions U. as sur- 

face waves. 
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For the vector Q(z, k, u) we have the system 

G” -+ kAG' + k2BG + kCG -; DG' = 0 (1.3) 

of two ordinary differential equations with smooth matrlces A(Z), e(r,a), 

C(a) and n(r) and the boundary conditions 

G’ + kFG = 0, z = a, z=h (1.4) 

In order to satisfy conditions (1.4), we shall construct the vector 2 

In the form 
G = qG(‘) + a2G(L) + cr3G(') + a,@*’ 

where G’” = G(j) (z, ii! U) Is one of the four linearly Independent solutions 

of the system (1.3). The coefficients c, are not all equal to zero when 

det I-1 = 0 (1.5) 
Here !?(k,o) Is a matrix of fourth order with the elements 

(v=h-j-+; j =1,2,3,4) 

The relation (1.5) Is the dispersion equation for the phase velocity U(k). 

We shall study the solutlln of this equation for k> 1, for which we shall 

need an asymptotic representation of the solution of the system (1.3) for 

k-.+m. 

The asymptotic formulas have various characteblstlcs In cases when the 
Interval [a,bJ does or does not have a point of multlpllclty (turning 
point) . In the first case one may, as In [I], make use of the formulas of 
Tamarkln [ 23 . In the second case the asy-mptotlcs are not difficult to con- 
struct by the method of standard equations In a form adapted to a system of 
equations. In addition, It Is poeslble $0 take adxantage of the results of 
Peshchenko [3] and Illukhln [4] for the splitting of the original system 
Into blocks, after which the obtained block system Is reduced to equations 
of the first and second order to which is applied the uniform asymptotic 
method of Langer [5] for the solution of second order equations. In this 
procedure, the obtaining of subsequent terms of the asymptotic series turns 
out to be extremely laborious. Threfore, the simplicity of the standard 
method and the convenience of the direct formulas that are obtained Is an 
Important advantage of this method In comparison with the method of splitting 
and the study of the split system. 

2. AnyPlptotlo rrprrruktrtlon or thr rolutiozu 0r the rydml (1.3). We 
rewrite the system (1.3) In the form of a system 

Z’ = h-HZ -t- KZ (2.1) 
of four ordinary differential equations of first order for the vector 

The matrices H and h’ are as follows: 
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I 0 0 0 0 0 I 0 i Ii 
I 

0 

_ Tz.2 i 

0 O 0 0 0 0 

P'itr -p’ip 0 

II o- pm,2 P-l 0 11 -k#Jv 0 0 -VP/V I 
Here 

Let us agree to call a point of multlpllclty (turning point) the value of 

the Independent variable ,a (depending on the parameter a ) for which two 

or more roots of the characteristic equation of the matrix R(r,c) coincide. 

By virtue of the inequality u,(c) c U,(Z) , points of multlpllclty are 

determined from Equations u,(z) = u and up(z) = u . If U,(Z) and U,(B) 

are such that for fixed a s 0 and zc [a, b] there are no points of multl- 

pliclty, then as Is renown (see for example 561), there exists on the lnterva 

[s,bl a fundamental matrix @(s,k,u) of the system (1.3) having for k-m 

the asymptotic representation 

CD (z, k, a) = PTrnil k-j Bj (2) + 0 (kern)] exp [k f~ (z’, U) do’] (2.2) 
j=O a 

Here P(a,o) ls a matrix which reduces ~(,,a) to the diagonal form A =P'P 

and the smooth matrices B, are determined from the recursion system. 

We examine the case of the presence of points of multlpllclty. For slm- 

pllclty we assume that u,(t) Increases monotonously, whereby u{(x) > 0 on 

[a,bl and u,(z) r u,(b) . Then.lt Is obvious that for 8, (a) < 0 < V8 (b) 

there is only one point of multlpllclty Z, (0) E [u, b]. It la not difficult 

to find a nonslngular transformation Z = _TX which brings H to the quasl- 

diagonal form 

H” = T-‘HT = -om~ 
[ii 

The matrix T Is of the .form 

For the vector X we have the system 

X e kH”X + K”X (K” = T-‘KT - T-‘T’) 

We examine the auxlllary quasi-diagonal matrix 

w = [Y,, Y,l 

(2.3) 
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Here 
y1 = [Jl, Jai, Jl,% = exp (7 k f m,, (z’, a) dz’) 

a 

Y,(Z) = 2k*‘@ [cp’ (z)]-‘% (k”cp (2)) 

y,(z) = k”’ [cp’ (z)]-“‘u (k”cp (2)) 

Here u(t) arid u(t) are Airy Cuncclons as defined by Fok [7]. 

The matrix W satisfies Equation 

Here 
W’=kHW+k-‘MW (2.4) 

M (z) = IO, M,l, M2=Ijryz) & r=$ +=+) 

If A(E), cl(t) and P(Z) are Infinitely differentiable then, as It is 
not difficult to show, one may select infinitely differentiable matrices 

A,(a), A,U),..., such that the expression 

X' = 5 k-‘Aj (z) W (2) 
j=O 

will be a formal matrix solution of the system (2.3). 

Xndeed, the substltutlcn of X. "Into the system (2.3) gives for the 

determination of Al(r) the recursion system 

AJP = HxAo, A,’ + A,HX = IPA, + KXAo 

A,,,’ + A,lH” F H”A,, +K”A, - A.wM (m = 1,2, . . .) 
(2.5) 

It is easy to verify that the general solution of the first Equations 

(2.5) is the mEtrlx 

A - [il 

a0 0 

I/ n 

co do 
0- 0 bo ’ domaa co 

with arbitrary a, (z), b, (z), co (z) and do (2). We consider the second of 

Equations (2.5). Each matrix of fourth order we shall partition into four 

square blocks. The blocks will be enumerated as follows: 

For the blocks we have Equations 

Aol’ + AllHIX = HIXAll + K"Ao,, A,2H,X = HlxA12 + K2xAoo (2-G) 

A I@lx = H,“A 1s + KsXA 01, A ,,,I + A&,” = H;A,, + KdXAor 

The first of these equations for a, and b, give3 

a,= exp 
s (K"),, dzv 

b, = exp 1 (Kx)22 dz 

From this same equation, the nondlagonal elements of the matrix A,I are 

determined In a unique way by means of the already known quantities a0 and 

bo . The equation containing the matrix A,S unlquely determines Its elements 
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by means of fI,” and A,, since H x 1 and _H4x do not have general character- 

istic numbers.(*) 

We turn to the equation containing A,, . A calculation 

K* shows that the nondlagonal elements of the block K4' 

zero, which has the consequence that dd may be put equal 

A straightforward calculation gives Formulas 

AOk = [CO? co19 Al, = & 8+ & u 1 8 

co = expy * ~Wh + (~x),,)I dz, Bl = - c*’ + (~“3**% 

dl 
Cl 

(2.7) 

of the matrix 
are Identically 

to zero. 

where o1 (a) and h,(x) are arbitrary (until now) functions. 

Fram equation containing Ala , the elements Am art' uniquely determined. 

It Is essential to note that the constructed A0 and A, are lnflnltely dif- 

ferentiable If H and X possess this property. This same procedure allows 

one to determine sequentially the remaining infinitely differentiable A, (a). 

Likewlse, If X, )1 and p are smooth then, obviously, it is possible to 

find only a finite number of smooth A, . 

We turn to the justlflcation of the formal expansion. It is not dlfflcult 

to see that the matrix 

X” = 5 k-‘Aj (z) W(z) 
j=O 

satisfies Equation 

(XX)' = [kH” + K” + k+J? (2, k, ~~11 X” 

where I' (2, k, (T) = 0 (1) for k - - . By standard method we 

following Integral equation for the proper fundamental matrix 

system (2.3): 

x (z, k, cr) = X” (z, k, a) - + 1 X” (z, k, 0) IX” (z’, k, 4l-’ 

x X (z’, k, a) dz’ 
We left multiply this equation by the nonslngular matrix 

(2.8) 

come to the 

X of the 

r (z‘, k, 4 x 

(2.9) 

p-1 zz 2 k-j/j j (2) 1-l 
j=O 

and Introduce the notation p-IX = U . The path of Integration in Equation 

(2.9) can be chosen as follows 

u (2) :T= W(z) f$- \ W; (z) w-1 (2') I?" (2') u (2') dz' + (2.10) 

* +$I W, (z)W-l (2’) I? (L, u (2’) dz’ (l‘” ._: - P-‘rP, w = WI + IV*) 

a 

*) If V, and VP are square matrices that do not have general character- 
istic numbers, then the matrix equation AV,= VoA 
A = 0 (se<:, t'or CXEUrt~lt, [33 ). 

has the unique solution 



The partitioning of the matrix W must be different for different vectors 

u’j’ (z): 

W1 ==. [Iii “J, 11 , Y2] for U(l) II Uo, WI = [/Ii “J, // , 0] for . Uf2) n U(*) 

For such a partition, as It Is easy to see, the Integral equation for the 

vector U@)J;l has a bounded kernel. Indeed, 

y, (2) y2-’ (4 = 0 (I Yr (4 Yz (z’) 1 + I Y2 @I 31 (z’) I) 

But from the properties of the Airy functions (see, for sxample, [7]), It 

follows that 

! 3% (4 92 (2’1 I < Cl exp k 5 m, (f, 4 dt; - for 28, 2 3 zg (~1 

Iv1 (4 Y2 (2’) I&, for z', 2 < zg (a) 

As a consequence of the Inequality mP (2, U) > 372, (2, 0) valid for 

2 > 2, (C), the matrix ys (2) Ys-’ (2’) -Jl (2’) JIW1 (z) is bounded for k - + 0 

on the entire square 2, 2’ E [a, bl. The boundedness of the first block of 

the matrices WV (2) w-l (2') J, (2') J,-" (2) (v = %2) is obvious. 

The proof of the boundedness of the kernel of the equations for the vec- 

tor Uf2'J2-1. follows in an analogous way. Hence, we obtain the asymptotic 

formula 

% 
(i) 

= T&z) 
(j) = T [?$L4"(2) + 0 (K”)] W,,,‘j’ (i=1, 2) (2.11) 

“=(I 

valid for a < 2 < b- 

The equations for the third and fourth vectors of the matrix U have to 

be examined In a somewhat different way because the functions y,(z) and 

Y=(E) have zeros for z -C 8, (CT) . 

If Z > 2, (a), then by considering the equations for U(3)yl-1 (z) and 
U’4’~s”l (z) we obtain a formula which is analogous to (2.11) 

Z(Z) (j) = T [msk-‘A, (z) + o (k-“)]~~,,w 
“==#I 

valid for 2, (U) < Z < b. 

(i = 3,4) (2.12) 

For Z< 2, (0) the matrix Y,(s) is bounded. This leads to Formula 

Z(z) 
(j) = T [m’$ /?-‘A, (z) W’j’ ti= 3,4) (2.13) 

V=O 
(4 + 0 Frn)] 

valid for a < z \< 2, (n). 

The method which has been applied is a combination of the classical method 

and the method of Cherry [a]. It allows of generalization of the case of a 

complex region and a complex parameter. However, the choice of a path of 

integration is markedly more oompl~cated~th~s situation as compared to the 

choice of the path in [8] because of the presence of the “classical” Part 

YI (a) of the matrix W(r) . It is more convenient to use the splitting 

method, developed for complex regions by Slbuya [9] and WaSOW Clol, although 
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this method ia eesentlally local. 

3. Dll~rrlcui OuxTOl (f&rt QUO). We shall construct the dlrrpersion 

curve8 0 - U(h) for k = 1 . Let VR (2) denote the velocity of a Raylelgh 

wave over the depth I . We shall aeeume that 

Wz (4, 2% (V < min[& b] & (2) = v, 

The application of the aeymptotlc representation (2.2) for 

O<a<vm-e 

and with m = 1 leads to the following representation of the dispersion 

equation Aa (k, u) A’ (k, a) = s” (k, a) Sb (k, a) e-akf(@ [I + 0 (e-kc)] 

where 
(3.1) 

A'@, a) = A: (u) + 0 (k-l), 

S' (k, a) = S,'(u) + 0 (k-l), 
f(a) = f m,(z, Wz>O, c>O 

a 

Ao* (0) = rf + qa (z, @la - 4m, (z, u) m, (z, a) 

&Jz (0) = [i + W (2, @Ia + 4m, (2, 0) m, (2, a) > 0 

It is obvious that if VR (U) # VR (b) and hence Aa # Ab for k > 1, 
Equation (3.1) has two solutions 

OR= (k) = OR: (k) i- Na (k) [i i- 0 (eekC) 1 exp [- 2kf (oRz)l (3.2) 

uR”(k) = uR;(k) + p (4 [I + 

Here U$ (k) satlsfiee the equation 

the representation URi (k) = VR (2) + 

0 (emkc) 1 exp I- 2kf (~Ri)l (3.3) 

A' (k, a) = 0 and for k > 1 hae 

0 (k-l) (see [l]); 

It ia extremely essential, that by virtue of the fact that Equations 

(2.10) are real, Formulae (2.11) to (2.13) contain only real terme; there- 

fore (3.2) and (3.3) are real. 

If A= (k, a) 3 Ab (k, a), then there exist two such solutiona ae follows: 

UR* (k) = 0~: (k) f z (k). [i -!- 0 (e-kC)l exp [- kj (OR:)] (3.4) 

9 (k) = 
PA.9 

(aA= / &)a 

par v,,,, < U < maX[a,b] % (2) there exists at least one turning point 

Z.(J) * We aeeume that u:(a) > 0 . If for 

V,rn + e < U < %f - e (vM = min {v, (b), vm), vpm 3 mi+,,tfp (d) 

we apply Formulae (2.11) to (2.13) and the Debye asymptotlcs of the Airy 

functions 
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u (0 = t-‘/a 11 + 0 (t’*ja) exp 2/9 t% 

v (0 = t3 P/, + 0 (t-‘/a)] exp (- */s fh) 
for 2 + + 00 

u (t) = l-4 [cos (*/&* + l/*Jc) + 0 (r-V*] 

V 0) = +‘a [sin (2/3r’/* + l/p) + 0 (rv,)] 
for t= --r4--00 

we go over TV a representation of the dlspertlon equation 

Here 
Atk,$Aoa (k, a) = l/&‘ck,$&, ~-*‘(‘) [ 1 + 0 (emkc)] (3.5) 

A*“ (k u) = sin Y (k, a) + 0 (k-l), S’” (k, a) = cos Y (k,. a) + 0 (k-1) 

Y (k, 4 = k5 (0) + 8 (a) 

8 (a) = + - co8 -’ 
Ta (0) 

Va* (a) + P* (4 ’ 
6 (a) = \ )hJ*n,p (2) - 1 dz >o 

01 

a (0) = 11 + r-n,2 (a, u)P, B (u) = 4 I m8 (a, 0) I mp (a, 4 > 0 

The quantities Ab and Sb have asymptotic representations (3.1). 

Because u > v, (a) > VR (N, Ab VG 4 # 0, then, as is easily seen, 

Equation (3.5) hetermlnes a family of curves k = k, (a) in the plane kc 

kl (a) = [h - 6 (a) + 0 (I-‘)1 6-l (a) (I = I,, I,, + 1, . z .; 1, > 1) (3.6) 

By virtue of C'(o) > 0 , with increasing Z , the modultis of inclination 

of this family grows without bound. The corres- 

ponding picture of the plane ka Is schematlcal- 

ly sketched In Flg.1. 

If vpm > maX V, (Z), then on the Interval 

% (4 < fJ < VP there are no turning 

points. In ihls case, Formula (2.2) leads tothe 

asymptotic representation Ab and Sb of the 

same type as the representation .L\*O, Soa in 

Formula (3.5). : 

0 

vs(a) L Lllll\l - _ _ _ _ _ - 

V,(b) ----_-__ 

vya) _‘2- _ - _ _ _ _ 

0 h 

4. M@p@rd~!~ OUWOO (rod OUO), The plc- Fig. 1 

ture on the plane ko Is more complicated when 

vR (b)> v,. Again, let u,'(a) > 0 , and let 

UR (b) = % (20) < Vpnt a < 20 < b. 

The application of Formulas (2.11) to (2.13) leads (again considering the 

region V, < (J < VY) to Equation (3.5), but in this case Ab(k,a) has 

a (simple) zero u = IJ& (/c). Starting from the integral equations ln Sec- 

tion 2 and the Debye asymptotlcs of the Airy functions, It Is not difficult 

to establish estimates of the type 
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k-’ $ A’” (k, a) - p’ (a) cos Y (k, a) = 0 (k-9 

-& [ Ab (k, a) - Aob (Q)] = 0 (k-9 etc. (4*1) 

We introduce the notation 11 = U - ant. of 

lrll >,A,@-', a>& A,>03 

then In this case It Is obvious that 

1 A’ (k, a) 1 > A&+“, 

and once again Formula (3.6) Is obtained. 

Now let q = 0 (k-l+), y > 0. Equation (3.5) then may be rewritten in 

the form 

qa (k, q) [b (k) + kqc (k, q)] = Q (k, q), b (k) = A*’ (k, ‘%I”, (k)) (4e2) 

Here Q(lt,q) is the right-hand side of Equation (3.5) and the functions 

c(k,n) and c(k,q) have the following asymptotic representations: 

a (k, rl) = -&Abok=og(b)+ 0 V) > 0 

c (k, q) = k-l; A*” (k, 4 Ia+ + 0 (k-l) 
(4.3) 

A straightforward examination of Equation (4.2) shows that the presence 
of the right-hand side Q = 0 (e -2kf) essentially affects the behavior of 
the curves a = u,(k) In the neighborhood of the curve U = Unt (ky. Namely, 

if Q E &we would have as a solution of Equation (4.2) the family (3.6) 
and the curve U = URN (k). which Intersects this family. As should be expec- 

ted, the presence of Q leads to the disappearance of the lntersectlonpodnts 

of the dispersion curves. As It Is easy to calculate, the neighboring curves 

have their places of nearest approach at the points 

k = [mn - (0 + v,5')/,= OR(b) + 0 @-‘)I 5-l (%=i (@I (4.4) 

o1 = lim [aRb, -uR(b)lk for 

6 

p& V,(D) -- -- - 
--\ us@ --------- 

vrr(Q) __----_--- I- 
I 

0 H 

Fig. 2 

k-+ce (m=mh mo+l,...; m031) 

The distance In the vertical direction 

between neighboring curves turns out in 

this case to be equal to 

Bh+[l $. 0 (k-l)1 exp [- kf (OR (@)I (4.5) 

B2 zx 

sobe-vrf’ 

2~‘dA.ob,dU lo=FR(II, >O) 
The properties of the dispersion curves 

for u=v,, may be Investigated by the 

application of the same Formulas (2.11) to 

(2.13). A schematic picture of the distri- 

bution of the curves In the kc plane is 
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given In Flg.2. 

The region 0 > Up, may be Investigated In a completely analogous way to 
the above; In which case it Is clear that formulas of the type (2.11) to 

(2.13) will contain the point PP (a) as a turning point. 

I.n conclusion we note that by patching together formulas of type (2.11) 

to (2.13) which are suitable to Intervals of monotone velocity, It Is possl- 

ble to study Rayleigh waves In a medium with nonmonotone propagation veloci- 

ties. 
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